Minimal condition number for positive definite Hankel matrices using semidefinite programming
نویسندگان
چکیده
Article history: Received 27 January 2009 Accepted 15 April 2010 Available online 26 June 2010 Submitted by V. Mehrmann
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملMinimizing Condition Number via Convex Programming
In this paper we consider minimizing the spectral condition number of a positive semidefinite matrix over a nonempty closed convex set Ω. We show that it can be solved as a convex programming problem, and moreover, the optimal value of the latter problem is achievable. As a consequence, when Ω is positive semidefinite representable, it can be cast into a semidefinite programming problem. We the...
متن کاملOn Some Matrix Trace Inequalities
A is further called positive definite, symbolized A > 0, if the strict inequality in 1.1 holds for all nonzero x ∈ C. An equivalent condition forA ∈ Mn to be positive definite is thatA is Hermitian and all eigenvalues of A are positive real numbers. Given a positive semidefinite matrix A and p > 0, A denotes the unique positive semidefinite pth power of A. Let A and B be two Hermitian matrices ...
متن کاملAn Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices
In this paper, we study the use of an incomplete Cholesky factorization (ICF) as a preconditioner for solving dense symmetric positive definite linear systems. This method is suitable for situations where matrices cannot be explicitly stored but each column can be easily computed. Analysis and implementation of this preconditioner are discussed. We test the proposed ICF on randomly generated sy...
متن کاملMinimizing the condition number of a positive definite matrix by completion
We consider the problem of minimizing the spectral condition number of a positive definite matrix by completion: min{cond( [ A BH B X ] ) : [ A BH B X ] positive definite}, where A is an n × n Hermitian positive definite matrix, B a p × n matrix and X is a free p× p Hermitian matrix. We reduce this problem to an optimization problem for a convex function in one variable. Using the minimal solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010